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Abstract— Recently, the task of Keywords Spotting (KWS) in continuous speech has known an increased interest. It has been considered 
as a very challenging and forward-looking field of speech processing technologies. The KWS systems have been widely used in many 
applications, like, spoken data retrieval, speech data mining, spoken term detection, telephone routing, etc. In this paper, we propose a 
two-stage approach for keywords spotting. In first stage, the inputted utterances will be decoded into a phonetic flow. And in second stage 
the keywords will be detected from this phonetic flow using the Classification and Regression Trees (CARTs).  

The phonetic decoding of continuous speech is largely taking benefits of deep learning. Very promising performances have been achieved 
using Deep Neural Network (DNN), Convolutional Neural Network (CNN) and other advanced Recurrent Neural Networks (RNNs) like 
Long Short Term Memory (LSTM) and Gated Recurrent units (GRU). This paper builds on these efforts and proposes potentially more 
pertinent architecture by combining CNN, GRU and DNN in a single framework that will be called “Convolutional Recurrent Gated Deep 
Neural Network” or simply “CNN-GRU-DNN”. The work will be conducted on TIMIT data set. 

Index Terms— Deep Neural Network, Convolutional Neural Network, Recurrent Neural Network, Long Short Term Memory, Gated 
Recurrent units, Keywords Spotting, two-stage approach, Classification and Regression Tree, TIMIT.   

——————————      —————————— 

1 INTRODUCTION                                                                     
n last few years, due to the significant technological 
advances a large amount of spoken data has been easily 
stored, shared and accessible in Internet and in differ-

ent datasets every day. However, supervising these large 
quantities is not an easy task for human being. Therefore, it’s 
necessary to develop new technologies and tools for an effec-
tive access to these amounts of data to extract all useful and 
pertinent information contained therein. In this context, the 
keywords spotting (KWS) task has attracted the attention of 
research and industry communities. 

The KWS task is a very forward-looking field of speech 
processing technology, which aims to detect and identify some 
pre-defined words (keywords) in utterances of continuous 
speech. It has been widely used in many applications like, 
spoken document retrieval, spoken term detection, spoken 
data mining, telephone routing, etc. Despite the challenging 
nature of keywords spotting, several systems have been de-
veloped over the years and have achieved interesting results. 
Recently, thanks to the advanced algorithms available for 
training neural networks and especially deep networks more 
promising performances have been obtained. 

The aim of this work is to develop an efficient system for 
keywords spotting. This system is based on a two-stage ap-
proach. In first stage, we propose a very deep learning archi-
tecture for decoding the inputted utterances into phonetic 
flow. Then, the predefined keywords will be detected from 
this phonetic flow using the Classification and Regression 
Trees (CARTs).  

The deep learning architecture proposed for phonetic de-
coding, is inspired by the model presented in [11]. This pro-

posed architecture will be composed by combing three deep 
neural networks: Convolutional Neural Network (CNN), Gat-
ed Recurrent Units (GRU) and Deep Neural Network (DNN) 
in a single framework architecture that will be called in this 
paper “Convolutional Recurrent Gated Deep Neural Net-
work” or simply “CNN-GRU-DNN”. These three sub-
networks will interact with each other in a unified architecture 
to generate a phonetic transcription of continuous speech. 

The remainder of this paper will be organized as follows.  
Influential works related to the keywords spotting task are 
presented in section 2. A main description of our keywords 
spotting system, the most performing deep architectures used 
for phonetic decoding and the process of building our pro-
posed deep architecture are presented in Section 3. The met-
rics used for evaluating the keywords spotting system are pre-
sented in section 4. The experiment setup and results are de-
scribed in Section 5. Finally, the conclusion with some direc-
tions for future work is outlined in Section 6. 

2 RELATED WORKS TO KEYWORDS SPOTTING 
Recently, researches related to keywords spotting in continu-
ous speech have known an increased interest. Several ap-
proaches have been investigated in literature over the years. 
Some of the earliest ones were based on Dynamic Time Warp-
ing (DTW), in this approach the keywords are searched by 
computing an alignment distance between a template repre-
senting the target keyword and all segments of the test speech 
signal to efficiently find a match. This approach has been used 
by many researchers but along with the evolution of speech 
processing technologies it started showing its shortcomings. 
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[1], [2], [5] 
Consequently, other techniques were investigated later, 

where the most popular ones were based on Hidden Markov 
Models (HMMs). In this approach, the keywords were repre-
sented by their phonetic transcriptions models and the non-
keywords were represented by filler or garbage models.  For a 
given utterance, this KWS technique outputs a sequence of 
keywords and non-keywords. Using filler models was effi-
cient to model the extraneous speech and to bring more prom-
ising results compared with the template-based approach. 
Further ameliorations to HMM-based techniques have been 
achieved using neural networks like; Reccurent Neural Net-
works (RNNs), Time-Delay Neural Networks (TDNNs), and 
more recently Deep Neural Networks (DNNs). However, the 
major inconvenient of HMM-based KWS technique that a 
simple change in the application vocabulary imposes to restart 
the recognition stage again, which is a very time-consuming. 
[3], [4], [6]-[8] 

To overcome this problematic, a two-stage approach has 
been recently proposed. This KWS approach performs on two 
main steps that are, indexing and search. In first step, the in-
putted utterance will be processed with automatic speech 
recognition (ASR) system to get a phonetic transcription. This 
phonetic transcription serves to obtain an intermediate repre-
sentation, known as the index. In second step, namely key-
words search, the keywords occurences will be simply and 
quickly searched using this index. The two-stage approach 
allows much faster detection because the main and hard stage 
of KWS task has been done beforehand, without needing any 
prior knowledge of the keywords to be searched. And if we 
want to search new keywords, only the second stage will be 
done again. [7]- [8] 

3 THE PROPOSED KEYWORDS SPOTTING SYSTEM 
Motivated by interesting performances of the two-stage ap-
proach we will adopt it to propose our keywords spotting sys-
tem. This proposed KWS system will perform as following: in 
first stage, a phonetic transcription of the inputted utterance 
will be done using our proposed deep learning architecture in 
combination with the Hidden Markov Models, and in second 
stage, the predefined keywords will be detected from this 
phonetic flow using the Classification and Regression Trees 
(CARTs).  

Our contributions in this paper will be proposing an ame-
liorated deep architecture to get better phonetic decoding in 
the first stage of our KWS system and proposing an efficient 
use of the Classification and Regression Trees for searching 
keywords in the second stage. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
3.1 First stage: Phonetic decoding 
Decoding continuous speech into phones sequence is a fun-
damental task used in many automatic speech recognition 
tasks. It has been treated by several ways, where the earliest 
one was the classic GMM-HMM model obtained by combin-
ing Gaussian Mixture Model (GMM) and Hidden Markov 
Model (HMM). The phone recognition rates obtained with 
such architecture were acceptable but not very efficient. In last 
few years, with the tremendous success of artificial intelli-
gence techniques much deep architectures have been intro-
duced, in the following sub-section we will present some of 
the most promising ones. 

3.1.1 An overview of the most promising deep architectures 

Some of the most popular deep architectures investigated for 
speech and phone recognition is Deep Neural Network 
(DNN). It’s a conventional Multi-Layer Perceptron (MLP), 
with multiples layers of hidden units. All hidden units of one 
layer are connected to those in next layer using unidirectional 
connections. The first layer in DNN will extract new represen-
tation from the speech input, and then its output will be 
passed to a next layer in order to generate a new higher repre-
sentation, and so on; for all next layers until reaching the top 
layer. A DNN may be used in HMM-based speech recognition 
system and be trained either in a supervised way or unsuper-
vised one using the pre-training approach introduced by Hin-
ton et al. in [14].  

Mohamed et al [26] proposed the first application of pre-
trained DNN for phone recognition. Their model has achieved 
a phone error rate of 22.4% on TIMIT benchmark (test set), 
which has been confirmed notably outperforming traditional 
“GMM-HMM” models and giving promising results for prac-
tical use. 
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Fig. 1. The two-stage proposed Keywords Spotting system.  
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Recently, more advanced alternatives of neural networks 
have been investigated like the Convolutional Neural Net-
work (CNN). It contains a pair of convolution and pooling 
layers followed by several fully connected layers. The convo-
lution layer performs convolution operations to get outputs 
from small local regions called receptive fields. In this layer, 
the neurons are organized into feature maps, where those be-
longing to the same feature map share same weights or filters. 
Each convolution layer will be generally followed by a pooling 
layer, which is also organized into a same number of feature 
maps as the convolution layer but with smaller maps.  

Convolutional Neural Networks have been widely used for 
speech recognition in many works. Abdel-Hamid et al [15] 
proposed a CNN with new limited-weight-sharing scheme 
and with frequency convolution. The experimental results of 
their CNN-HMM model have achieved a phone error rate of 
20.36% on TIMIT dataset, which has improved more the rates 
of phone recognition compared with DNN. In other work 
proposed by Loth [17] a CNN-HMM architecture with convo-
lution over both time and frequency has been introduced. The 
phone error rate reported in this work on TIMIT dataset was 
16.7%. 

A main weakness of convolutional neural network is that it 
can just model a limited temporal dependency. To overcome 
this problem, some researchers have investigated the use of 
recurrent neural network (RNN) for speech recognition. Nev-
ertheless, training RNN is a difficult task, which may lead to 
many problems of gradient vanishing and exploding. Conse-
quently, others alternative architectures of RNN have been 
introduced where the most promising ones are Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRU). 

In a standard LSTM network the reccurent hidden layer has 
a number of recurrently connected units called “memory 
blocks”. Each memory block contains one or more self-
connected memory cells to store the contextual information 
and three multiplicative gates called input, output and forget 
gate to control the flow of information. 

For further improvements the Bidirectional LSTM (BLSTM) 
may be used. It takes benefit of both past and future contexts 
in speech signals. A BLSTM is composed by a forward layer to 
process the input sequence in the forward direction and a 
backward layer to process the input sequence in the backward 
direction. The resulted output is obtained by concatenating the 
outputs of the two layers.  

Some of the earliest works introducing Long Short Term 
Memory (LSTM) for speech recognition was presented by 
Graves et al [23]. They have shown that bidirectional LSTM 
(BLSTM) are more promising than unidirectional LSTM. They 
have achieved a phone error rate of 17.7% on TIMIT dataset by 
using a deep BLSTM.  

To ameliorate the computational efficiency of LSTM an al-
ternative architecture called Gated Recurrent Units (GRU) has 
been introduced. This architecture is an advanced variant of 
RNN, which allows also solving the gradient vanishing prob-
lem but with using a less number of weights. Compared with 
LSTM, Gated Recurrent Units is simpler. It contains only two 
multiplicative gates; update and reset, where the “update 
gate” is obtained by combining the “forget” and the “input” 
gates. GRU manages the flow of information inside the units 

without needing a separate memory cell. Similarly to LSTM, 
the Gated Recurrent Units has been also used in a bidirectional 
alternative. [29] 

More recently, a very improved deep architecture called 
“Convolutional Long short-Term Memory Deep Neural Net-
work” (CLDNN) [11] has been introduced to achieve higher 
recognition accuracy. This architecture combines in a single 
framework CNN, LSTM and DNN. 

The CLDNN model has been used in HMM-based speech 
recognition architecture in the work proposed by Sainath et al. 
[11] and has achieved a WER of 17.3% on a large vocabulary 
task, which has brought a 4% relative improvement over the 
LSTM for the same task. 

3.1.2 The proposed architecture 

Inspired by the work presented in [11] we propose an amelio-
rated deep architecture, which will be called “Convolutional 
Gated Recurrent Deep Neural Network”. This proposed mod-
el is built by combining CNN, GRU and DNN in a single 
framework that will be defined like “CNN-GRU-DNN”. 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
                                  

The proposed model takes benefit of the distinct strength of 

Input 

Convolutional Layer 

Max-pooling Layer 

GRU Layer 

GRU Layer 

Feedforward Layer 

Feedforward Layer 

Output Targets 

… 

… 

Convolutional Layer 

Fully connected layers 

Convolutional 
Neural Network 

Gated Recurrent 
Units 

 

Deep Neural 
Network 

Dimension reduction Linear layer 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An illustration of the proposed deep architecture.  
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CNN, GRU and LSTM and reduces the effects of their indi-
vidual shortcomings. 

The baseline “CNN-GRU-DNN” is shown in Fig.2, for this 
proposed architecture we feed the input features within their 
temporal context into a Convolutional Neural Network to re-
duce the spectral variations existing in speech signals. In this 
work, the CNN used is only with convolution along frequen-
cy. The dimension of the last layer in this CNN architecture is 
very large; for that a linear layer is added after these CNN 
layers. This linear layer reduces the number of parameters 
without deteriorating the recognition performances. Next, the 
output of this linear layer is passed into a stack of GRU layers 
to model the long-term temporal dynamics. Finally, after per-
forming frequency and temporal modeling, we pass the out-
put of the top GRU layer into a DNN composed by few num-
ber of fully-connected feed-forward layers to provide a better 
discrimination of the output targets.  

The “CNN-GRU-DNN” outputs a probability distribution 
over the possible labels of the central frame. To obtain the 
phones sequence, these probabilities must be divided by the 
HMM states produced by the higher DNN layer, and then will 
be passed to a Viterbi decoder.  

 
3.2 Second stage: keywords search 

 
As we detailed previously, the first stage of our proposed 
KWS system will serve to generate a phonetic transcription of 
the inputted utterances. And in second stage, the predefined 
keywords will be detected from this phonetic flow using the 
Classification and Regression Tree (CART). 

The CART is a machine learning algorithm used to predict 
how a given input may lead to a specific output according to 
some contextual factors. The CART algorithm is defined by a 
number of yes or no questions associated to each non terminal 
node. A new branch conducting to the next question will be 
presented for each possible answer. All these answers will 
build a tree like structure, where the terminal nodes called 
also leaves maintain the specific output. 

The CART building requires a training set composed by in-
puts (features) and their corresponding labels (outputs). For 
our keywords spotting task the CART algorithm is used to 
retrieve the grapheme corresponding to a given phoneme. 
First, for training the spelling and pronunciations of words 
existing in training set must be aligned. These alignments will 
produce different grapheme-phoneme correspondences; in 
such a way each phoneme in a word will get its corresponding 
grapheme (we may use the null graphemic or phonemic sym-
bol “_” when the spelling and pronunciation of a word are 
with different lengths). All these correspondences will be used 
to train a number of classification and regression trees, one 
tree for each phoneme. 

According to the value of the contextual factor, assigned to 
each non terminal node, the tree will be so crossed starting 
from a parent node and then passing to a child one, until 
reaching the terminal node (leaf). The grapheme correspond-
ing to a given phoneme is maintained by this leaf.  

The node splitting and tree design are based on the mini-
mum entropy criterion that can be defined as:  [34] 

 

    
2( | ) ( | ) log ( | )

l L
H L node P l node P l node

∈

= −∑                     (1) 

where L  are the possible graphemes, and ( | )P l node  is the 
grapheme’s occurrences for a given node. 

According to the phoneme and grapheme contexts the par-
ent node will be splitted into two child nodes. We can define 
the average entropy as: [34] 

 
1 2 1 1 2 2( | , ) ( | ) ( ) ( | ) ( )H L child child H L child P child H L child P child= +

(2) 

where  1( )P child  and 2( )P child  refer to the probabilities of 
reaching the two child nodes i.e, the probabilities for which 
the contextual factor iC  falls respectively, into 1

jC  and 2
jC , 

which  are the two subsets obtained by the partition j
iC  of the 

values of iC , where i  and j  denote the indexes presenting 
the phonemes and the partition of theirs values. 

The best splitting ,
,
j best

i bestC  presents the maximum difference 
between the entropies values before and after splitting. This 
difference is defined as ( ,C )j

iI L  and it corresponds to the av-
erage of mutual information between the graphemes to pre-
dict and the splitting: [34] 

       1 2( , ) ( | ) ( | , )j
iI L C H L parent H L child child= −          (3)              

To obtain the best splitting ,
,
j best

i bestC , we must get first the 

partition ,j best
iC  that maximizes ( , )j

iI L C  and then we maxim-

ize ,( ,C )j best
iI L . 

                 , arg max ( ,C )j best j
i ij

C I L=                              (4) 

                  , ,
, arg max ( ,C )j best j best

ii best i
C I L=                        (5)                                                                                                                      

These steps must be repeated for all the child nodes until 
obtaining a maximum of ( ,C )j

iI L  inferior to a predefined 
threshold, for which the entropy reduction is considered in-
significant.   

During test stage, the different CARTs trained for each 
phoneme will be used to retrieve the predefined keywords. 
Each keyword is detected using the phones sequence, output-
ted by the proposed deep model described previously, and by 
selecting at a time the phoneme on left and on right of the cur-
rent phoneme. The CART of this phoneme will be crossed 
from the root node until reaching the leaf, the corresponding 
grapheme is maintained so by this leaf. These steps will be 
repeated with the following phoneme and its corresponding 
grapheme will be retrieved similarly. Finally, the detected 
keyword is obtained by concatenating all the predicted graph-
emes that have been obtained. 

4 EVALUATION METRICS FOR THE KWS SYSTEM 
Once we have tested the keywords spotting system and ob-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018                                                                                           1534 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

tained the putative keywords occurrences, these results will be 
evaluated. Generally, the errors generated by a KWS system 
may be explicated by two different scenarios. The first one is 
when the KWS system doesn’t detect a keyword, which is al-
ready pronounced in the inputted utterance. And the second 
one is when the KWS system detects a keyword, which is ac-
tually not pronounced in the inputted utterance. The first error 
is called “missing” and the second error is called “false 
alarm”. [7], [8] 

• Missed Detection Rate (missing): For a given key-
word, q, it can be defined as: 

                        ( )( ) ( )
N qmissP qmiss N qTrue

=                              (6) 

where ( )N qmiss corresponds to the number of missed 
detections and ( )TrueN q  corresponds to the number 
of reference occurrences.  

The rate of total missed detections produced by the 
KWS system may be computed as: 

                            1 ( )
( )1

K N qmissPmiss K N qTrueq
= ∑

=
                       (7)                           

where K corresponds to the number of keywords 

• Detection Rate or accuracy: corresponds to the num-
ber of references keywords occurrences, which are 
correctly detected by the KWS system. For a given 
keyword, q, the detection rate can be defined as:  

                        ( ) 1 ( )P q P qcorrect miss= −                       (8)                                    

• False Alarm Rate:  For a given keyword, q, the false 
alarm rate can be defined as: 

                          
( )

( )
( )

N qFAP qFA N qNT
=                                 (9)                                                  

where ( )N qFA  corresponds to the number of false 
alarms and ( )N qNT  corresponds to the non-target 
trials.                 

The overall rate corresponding to the total false 
alarms produced by the KWS system can be calculat-
ed as: 

                           1 ( )1
KP P qFAFA qK= ∑ =                        (10)                                                    

• There are two others measures that can be taken as eval-
uation metrics for the KWS system, which are recall and 
precision rates.  

The recall rate may be defined in terms of the number of 
total detections to make ( )N qTrue  and the keywords cor-
rectly detected ( )N qcorrect . 

                     
100* ( )Recall

( )
Ncorrect q

NTrue q
=                         (11) 

The precision rate may be defined in terms of the number 
of keywords correctly detected ( )N qcorrect , and the 
number of false alarms ( )FAN q . 

                        
100* ( )Precision ( )correct( )

Ncorrect q
N N qq FA

= +                    (12) 

Once we have presented our basic approaches for phonetic 
transcription and for keywords search, as well as presenting 
the mains evaluation metric of the KWS system we present in 
next section the experiments setup and the obtained results. 

5 EXPERIMENTAL SETUP AND RESULTS 

5.1 Experimental results of phone recognition on TIMIT 

The TIMIT dataset consists of 6,300 sentences recorded by 630 
speakers of 8 major dialects of American English. By removing 
the SA sentences (two sentences recorded by all the speakers), 
we get a training set containing 3,696 sentences from 462 
speakers. A test set containing 192 sentences from 24 speakers. 
In order to validate our results and to adjust the network pa-
rameters, a random 10% of the training set, which contains 400 
sentences from 50 speakers, was held out and taken as devel-
opment (dev) set. 

5.1.1 Baselines 

In all the experiments, a bigram language estimated from the 
training set was used. All training labels are obtained through 
forced alignment using a well trained “GMM-HMM” model 
with 1946 tied context dependent HMM states.  During decod-
ing step the phoneme label outputs were mapped to the usual 
set of 39 labels. We used Kaldi [32] for feature extraction, de-
coding, and training of the initial “GMM-HMM” model and 
all the baselines neural networks. 

First, we investigate the CNN, GRU and DNN models used 
in this paper. The CNN is trained with two convolution layers 
of 128 and 256 filters, respectively and using limited weight 
sharing scheme (LWS). The first convolution layer is followed 
by a max-pooling layer with a pooling size of 6 and a sub-
sampling factor of 2, while no pooling was used for the second 
layer. After these convolution-pooling layers four fully con-
nected layers are added, each of them with 1024 hidden units. 

In first step, we will use two GRU layers each of them with 
1024 units. They are trained using the truncated back-
propagation though time (BPTT) learning algorithm. 

The DNN is composed by a few number of fully-connected 
feed-forward layers, trained in a supervised way. These layers 
are all with 1024 hidden units and sigmoid activation function.  

For training CNN and DNN the stochastic gradient decent 
(SGD) is used. We tried to choose specific values for the initial 
and final learning rates to get a stable convergence. For fine-
tuning, the initial learning rate is set to 0.0004 for the CNN 
and to 0.008 for the DNN. This learning rate will be divided by 
two for each increasing in cross-validation frame accuracy for 
a single epoch less than 0.5%. For these experiments the SGD 
uses mini-batches of 256 frames.  

The input to all these networks are 25 ms frames of 40-
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dimensional filterbank features (FBANK features), along with 
their first and second temporal derivatives, computed every 10 
ms.  

Table 1 illustrates the phone error recognition (PER) rates 
obtained for the different neural networks (CNN, DNN and 
GRU) described previously. 

 
TABLE 1 

PHONE ERROR RATES OBTAINED FOR THE TIMIT DATASET WITH 
VARIOUS ARCHITECTURES 

Method PER % (dev core) PER % (test core) 

DNN  (6 layers) 20.45 21.18 

CNN 17.43 18.83 

GRU (2 layers) 17.52 18.85 

 

We observe that more improved phone recognition per-
formance has been obtained using CNN over DNN. This sig-
nificance can be explicated by the invariance of CNNs to small 
frequency shifts, which normally occur in speech signals. That 
makes the CNNs more robust to speaker variations than the 
DNNs. From these results we can also observe that the two 
GRU layers are outperforming the traditional DNNs and giv-
ing comparable performances to CNNs. More interesting im-
provements in performances of the GRU based architecture 
over the CNNs may be obtained by increasing the number of 
GRU layers in the stack. 

5.1.2 The proposed architecture 

In this section, we evaluate different combinations of CNN, 
DNN and GRU models, to justify our choice of the proposed 
architecture. First, we add 2 GRU layers after the CNN; this 
combination is defined like “CNN-GRU”. Then, we add a 
DNN composed of 3 fully-connected feed-forward layers after 
the 2 layers of GRU; this combination is defined like “GRU-
DNN”. 

Finally, the proposed architecture will be defined like 
“CNN-GRU-DNN”. This architecture performs in three steps: 
first, the input features are passed into a CNN, and then the 
output of the CNN layers is passed into a linear layer to re-
duce the number of parameters. After this linear layer two 
GRU layers are added. Finally, after performing frequency 
and temporal modeling, the top GRU layer output is passed 
into 3 DNN layers. All results are reported in table 2. 

The performances obtained by the proposed model “CNN-
GRU-DNN” can bring up to 0.97% improvement in the recog-
nition rates over a GRU model used alone for the dev set, and 
up to 0.89% for the test set. This improvement is not surprising 
due that this proposed model take benefits from the comple-
mentary individual modeling capabilities of the three neural 
networks (CNN, GRU and DNN), and is demonstrated to be 
more effective than each of all these subnetworks used alone. 
 
 

TABLE 2 
PHONE ERROR RATES OBTAINED FOR THE TIMIT DATASET USING 

THE PROPOSED ARCHITECTURE 
Method PER % (dev core) PER % (test core) 

Method PER % (dev core) PER % (test core) 

GRU 17.52 18.85 

CNN-GRU 16.77 18.22 

GRU-DNN 17.21 18.60 

CNN-GRU-DNN 16.55 17.96 

 
To provide a proper performance evaluation, we make a set 

of experiments to compare the results of our proposed model 
“CNN-GRU-DNN” with the CLDNN model introduced in 
[11]. This later model is composed by combining CNN, LSTM 
and DNN in a single framework defined like “CNN-LSTM-
DNN”. In our experiments for the CLDNN architecture we 
use the same CNN, linear layer and DNN models as our pro-
posed architecture and we use two LSTM layers, each of them 
with 1024 memory cells. These LSTM layers are also trained 
using the truncated back-propagation though time (BPTT) 
learning algorithm. 

 
TABLE 3 

COMPARISON BETWEEN THE PROPOSED MODEL AND THE CLDNN 
MODEL 

Method PER % (dev core) PER % (test core) 

LSTM (2 layers) 17.76 18.97 

CLDNN 16.77 18.10 

GRU (2 layers) 17.52 18.85 

CNN-GRU-DNN 16.55 17.96 

 

We observe that the performances of LSTM and GRU layers 
are comparable with a bit advance for the GRU ones. Also, 
these reported phone recognition rates confirm that using 
GRU instead of LSTM in the proposed architecture has signifi-
cantly improved the performances compared to the CLDNN 
architecture, while having less number of parameters. The 
performances obtained by our proposed model “CNN-GRU-
DNN” can bring up to 0.22% improvement in the recognition 
rates over the CLDNN model for the dev set, and up to 0.14% 
for the test set. 

5.1.3 Further experiments for the proposed model 

In this section, we try to investigate additional modifications 
for the proposed model, experimented previously, to further 
improve the performances. 

First, we suggest using two different pooling operations, 
namely max and average pooling for the CNN composing our 
proposed model. The two other subnetworks are kept the 
same as previous experiments.  
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TABLE 4 
PHONE ERROR RATES OBTAINED FOR THE TIMIT DATASET FOR THE 
PROPOSED MODEL USING DIFFERENT POLLING STRATEGIES IN CNN 

Method PER % (dev core) PER % (test core) 

Max 16.55 17.96 

Average 16.84 18.28 

 

We observe that the max-pooling function performs better 
than the average-pooling function. The max-pooling function 
has the ability to emphasize the transients, in contrary of the 
average one which smooths them out. Consequently, in all the 
following experiments, the CNN model used in the proposed 
architecture will be with a max-pooling function. 

We pass now to show how the depth (number of layers) of 
GRU may affect the overall performance of the proposed deep 
model. A set of experiments is conducted using respectively 2, 
3 and 4 GRU layers, all parameters of the others architectures 
are kept the same as previously.  

 
TABLE 5 

PHONE ERROR RATES OBTAINED FOR THE TIMIT DATASET WITH 
DEEPER GRU LAYERS IN THE PROPOSED MODEL 

Number of 
GRU layers 

PER % (dev core) PER % (test core) 

GRU CNN-GRU-
DNN GRU CNN-GRU-

DNN 
2 layers 17.52 16.55 18.85 17.96 

3 layers 17.17 16.21 18.49 17.65 

4  layers 16.64 15.77 17.90 17.19 

 

These results show that deeper “CNN-GRU-DNN” models 
may bring further improvements in the phone recognition 
performances. The lowest error rates are obtained using 4 
GRU layers, however increasing the number of GRU layers 
beyond that make the training hard and seems to complicate 
the training without bringing consistent improvements.  

The proposed model using unidirectional GRU layers ei-
ther shallow or deep one has shown very interesting phone 
recognition rates addressed on TIMIT task. In next experi-
ments we are interesting about ameliorating further the per-
formances and using bidirectional GRU (BGRU) layer instead 
of unidirectional one in the proposed model. This bidirectional 
GRU is composed for each depth by two unidirectional GRU 
layers: a forward and backward layer, each of them with 512 
units. For training the bidirectional GRU layer, the context 
sensitive-chunk BPTT (CSC-BPTT) algorithm is used. 

 In this case, the proposed architecture will be defined like 
“CNN-BGRU-DNN”. This architecture performs in three 
steps: first, the input features are passed into a CNN, and then 
the output of the CNN layers is passed into a linear layer to 
reduce the number of parameters. After this linear layer two 
BGRU layers are added.  Finally, after performing frequency 
and temporal modeling, the top BGRU layer output is passed 
into 3 DNN layers. All parameters of the others architectures 
are kept the same as previous section. 

 

TABLE 6 
PHONE ERROR RATES OBTAINED FOR THE TIMIT DATASET USING THE 

PROPOSED ARCHITECTURE WITH BGRU LAYERS 
Method PER % (dev core) PER % (test core) 

BGRU (2 layers) 16.94 17.87 

CNN-BGRU-DNN 16.03 17.15 

 

These results show that the proposed model using Bidirec-
tional GRU layers may bring further improvements in phone 
recognition performances over the model using unidirectional 
GRU layers. This efficiency is not surprising due to the ability 
of bidirectional GRU layer in exploiting the bidirectional con-
textual information (previous and future context), contrari-
wise to the unidirectional GRU layer that can exploit only the 
past history. 

The performances obtained by the proposed model “CNN-
BGRU-DNN” can bring up to 0.91% improvement in the 
recognition rates over a BGRU model used alone for the dev 
set, and up to 0.72% for the test set.  

Now, we suggest comparing the results obtained with our 
proposed model “CNN-BGRU-DNN” using two BGRU layers 
and the results of the CLDNN model using also two BLSTM 
layers, each of them with 512 memory cells per direction (for-
ward LSTM and backward LSTM). These BLSTM layers are 
also trained using context sensitive-chunk BPTT (CSC-BPTT) 
algorithm. All the parameters of others architectures are kept 
the same as previously. 

 
TABLE 7 

COMPARISON BETWEEN THE PROPOSED MODEL “CNN-BGRU-
DNN” AND THE CLDNN MODEL 

Method PER % (dev core) PER % (test core) 

CLDNN 16.43 17.61 

CNN-BGRU-DNN 16.03 17.15 

 

These results confirm that the phone recognition rates ob-
tained with the proposed model “CNN-BGRU-DNN” are 
more interesting than the CLDNN model. Using BGRU layers 
instead of BLSTM layers is more performing. The performanc-
es obtained by the proposed model can bring up to 0.4% im-
provement in the recognition rates over the CLDNN model for 
the dev set, and up to 0.46% for the test set. 

We pass now to show how the depth of BGRU layers may 
affect the overall performance of the proposed model. A set of 
experiments is conducted using respectively 2, 3 and 4 BGRU 
layers. 

 
 
 
 
 

TABLE 8 
PHONE ERROR RATES OBTAINED FOR THE TIMIT DATASET USING 

BGRU LAYERS IN THE PROPOSED MODEL 
Number of PER % (dev core) PER % (test core) 
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BGRU lay-
ers BGRU CNN-BGRU-

DNN BGRU CNN-
BGRU-DNN 

2 layers 16.94 16.03 17.87 17.15 

3 layers 16.48 15.67 17.42 16.56 

4  layers 16.04 15.21 17.10 16.19 

 

These results confirm that increasing the number of BGRU 
layers can bring more improvements in phone recognition 
rates. For our experiments the best number of BGRU layer to 
add was four. A deep BGRU provide an efficient way to mod-
el the long-range history and the non-linear relationship struc-
tures. The proposed deep architecture helps to further reduce 
the PER and to give promising recognition results when add-
ing more BGRU layers. Theoretically, increasing the number 
of BGRU layers in the proposed model may not harm, while 
practically that will let the convergence more slow and the 
network may broke after few epochs.  

In last step of our work and to bring more improvements 
for the proposed model performances, we introduce a set of 
experiments using the proposed model with four BGRU layers 
and different features types. The used features are 39 dimen-
sional MFCC features, 40 dimensional filterbank features and 
the LDA+STC+FMLLR features.  

These later features are obtained by splicing 11 frames (5 on 
the left and right of the current frame) of 13 dimensional 
MFCCs; then we apply a linear discriminant analysis LDA to 
reduce the dimension to 40. The MFCCs are normalized with 
cepstral mean-variance normalization (CMVN). After that, the 
semi-tied covariance (STC) transform is applied on the previ-
ous features. Finally, we apply on these features speaker adap-
tation using the feature-space maximum likelihood linear re-
gression (FMLLR). 

 
TABLE 9 

PHONE ERROR RATES OBTAINED FOR THE TIMIT DATASET USING 
“CNN-BGRU-DNN” MODEL WITH DIFFERENT FEATURES TYPES 

Features PER % (dev core) PER % (test core) 

MFCC 15.63 16.58 

FBANK 15.21 16.19 

FMLLR 14.69 15.72 

 

We find that the proposed model with four BGRU layers 
and using FMLLR features achieve a phone error rate of  
15.72% for the TIMIT test set which is the most promising and 
performing result obtaining in this paper. Making a compari-
son with the CLDNN model confirms that our proposed mod-
el reached the highest phone recognition rates and achieved 
more improved performances. 

5.2 Experimental results of the proposed KWS system 
In this section we present the experiments and results of our 
keywords spotting system, using the phones sequences gener-
ated with the proposed deep architecture (using four BGRU 
layers and FMLLR features) combined with Hidden Markov 
Models (HMMs) in a merge Context dependent hybrid archi-

tecture. 
In our experiments we selected forty-two words as key-

words from the TIMIT dataset. These keywords can be parti-
tioned into three groups: Short-length Keywords Group (SKG) 
containing the keywords with 4, 5 and 6 phones. Medium-
length Keywords Group (MKG) containing the keywords with 
7, 8 and 9 phones. Finally, Long-length Keywords Group 
(LKG) containing the keywords with more than 9 phones.   

 
TABLE 10 

RESULTS OF KEYWORDS SPOTTING FOR DIFFERENT WORDS LENGTH 
USING A TWO-STAGE APPROACH  

Keywords 
group 

Short-length 
Keywords 

Medium-
length 

Keywords 

Long-
length 

Keywords 

Search terms 14 14 14 

Reference oc-
currences 

109 133 102 

Missed Detec-
tion Rate 

0.43 0.25 0.17 

Correct Detec-
tion Rate 

0.56 0.74 0.82 

False alarm rate 0.40 0.11 0.01 

Precision % 58.49 89.71 97.67 

Recall % 56.88 72.18 82.35 

   

From the results listed in the following table we observe 
that the highest detection rate occurs for detecting the long-
length keywords and the lowest for the short-length key-
words. We observe also that the lowest missed detection rate 
occurs for long-length keywords and the highest for the short-
length keywords. Finally, we observe that the task of detecting 
keywords belonging to the short-length keywords group will 
produce the higher number of false alarms in comparison with 
the two others groups. 

In fact, by analyzing the false alarm error we observe that is 
usually caused by three principles causes: punctuation treat-
ing, conflict of treating word boundaries and presence of the 
keyword’s pronunciation in other words. The results obtained 
using the proposed KWS system proof that more false alarms 
will be generated for the short-length keywords, due that they 
are the most probable to be a subpart of other keywords, like 
the long-length keywords, also they are the most probable to 
be composed by coupling two words on the speech. On the 
contrary, these effects occurs less for the long keywords. For 
that, we can see that the KWS system performed better on 
longer keywords.  

From these results we can confirm that our proposed KWS 
system is able to localize the keywords, and yield promising 
performances not only in terms of accuracy but also in terms 
of speed. We can also confirm that the proposed deep model 
has shown great improvements in phone recognition decod-
ing, representing the first stage of our proposed KWS ap-
proach, which has consequently improved the performances 
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of our KWS system compared to our previous work using 
DNN, CNN, and LSTM alones. 

5 CONCLUSION 
In this paper, we presented a unified deep architecture called 
“Convolutional Gated Recurrent Deep Neural Network” or 
simply “CNN-GRU-DNN”. We show that our proposed mod-
el is more competitive than all its subnetworks namely; DNN, 
CNN and GRU used alone. Significant improvements can be 
achieved, due to the complementary capabilities provided by 
these networks. The proposed model using two unidirectional 
GRU layers achieves a 0.89% relative improvement over the 
GRU model and 0.14% over the CLDNN model, for the TIMIT 
test set. And using two bidirectional GRU layers achieves a 
0.72% relative improvement over the BGRU model and 0.46% 
over the CLDNN model. A phone error rate of 15.72% has 
been obtained using our proposed model with four BGRU 
layers and FMLLR features, which has been shown to give a 
very promising performance for the TIMIT phone recognition 
task.  

These interesting results of phone recognition have amelio-
rated significantly the performances of our proposed two-
stage keywords spotting system. Several experiments were 
carried out to evaluate the effectiveness of our KWS technique. 
And it is clear from the obtained level of performance, that we 
can achieve very useful and important accuracy.  

As a future work, we would like to ameliorate our deep ar-
chitecture by combining CNN, DNN and inside the GRU we 
propose to use others advanced networks, as Residual LSTM, 
Convolutional LSTM and Fast LSTM, etc.., in such a way we 
further improve the phone recognition rates and consequently 
improve the performances of the proposed KWS system. 
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